zmk/app/src/split/bluetooth/central.c
2023-11-27 15:06:48 -08:00

751 lines
26 KiB
C

/*
* Copyright (c) 2020 The ZMK Contributors
*
* SPDX-License-Identifier: MIT
*/
#include <zephyr/types.h>
#include <zephyr/init.h>
#include <zephyr/bluetooth/bluetooth.h>
#include <zephyr/bluetooth/conn.h>
#include <zephyr/bluetooth/uuid.h>
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/hci.h>
#include <zephyr/sys/byteorder.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(zmk, CONFIG_ZMK_LOG_LEVEL);
#include <zmk/stdlib.h>
#include <zmk/ble.h>
#include <zmk/behavior.h>
#include <zmk/sensors.h>
#include <zmk/split/bluetooth/uuid.h>
#include <zmk/split/bluetooth/service.h>
#include <zmk/event_manager.h>
#include <zmk/events/position_state_changed.h>
#include <zmk/events/sensor_event.h>
#include <zmk/hid_indicators_types.h>
static int start_scanning(void);
#define POSITION_STATE_DATA_LEN 16
enum peripheral_slot_state {
PERIPHERAL_SLOT_STATE_OPEN,
PERIPHERAL_SLOT_STATE_CONNECTING,
PERIPHERAL_SLOT_STATE_CONNECTED,
};
struct peripheral_slot {
enum peripheral_slot_state state;
struct bt_conn *conn;
struct bt_gatt_discover_params discover_params;
struct bt_gatt_subscribe_params subscribe_params;
struct bt_gatt_subscribe_params sensor_subscribe_params;
struct bt_gatt_discover_params sub_discover_params;
uint16_t run_behavior_handle;
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
uint16_t update_hid_indicators;
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
uint8_t position_state[POSITION_STATE_DATA_LEN];
uint8_t changed_positions[POSITION_STATE_DATA_LEN];
};
static struct peripheral_slot peripherals[ZMK_SPLIT_BLE_PERIPHERAL_COUNT];
static bool is_scanning = false;
static const struct bt_uuid_128 split_service_uuid = BT_UUID_INIT_128(ZMK_SPLIT_BT_SERVICE_UUID);
K_MSGQ_DEFINE(peripheral_event_msgq, sizeof(struct zmk_position_state_changed),
CONFIG_ZMK_SPLIT_BLE_CENTRAL_POSITION_QUEUE_SIZE, 4);
void peripheral_event_work_callback(struct k_work *work) {
struct zmk_position_state_changed ev;
while (k_msgq_get(&peripheral_event_msgq, &ev, K_NO_WAIT) == 0) {
LOG_DBG("Trigger key position state change for %d", ev.position);
ZMK_EVENT_RAISE(new_zmk_position_state_changed(ev));
}
}
K_WORK_DEFINE(peripheral_event_work, peripheral_event_work_callback);
int peripheral_slot_index_for_conn(struct bt_conn *conn) {
for (int i = 0; i < ZMK_SPLIT_BLE_PERIPHERAL_COUNT; i++) {
if (peripherals[i].conn == conn) {
return i;
}
}
return -EINVAL;
}
struct peripheral_slot *peripheral_slot_for_conn(struct bt_conn *conn) {
int idx = peripheral_slot_index_for_conn(conn);
if (idx < 0) {
return NULL;
}
return &peripherals[idx];
}
int release_peripheral_slot(int index) {
if (index < 0 || index >= ZMK_SPLIT_BLE_PERIPHERAL_COUNT) {
return -EINVAL;
}
struct peripheral_slot *slot = &peripherals[index];
if (slot->state == PERIPHERAL_SLOT_STATE_OPEN) {
return -EINVAL;
}
LOG_DBG("Releasing peripheral slot at %d", index);
if (slot->conn != NULL) {
bt_conn_unref(slot->conn);
slot->conn = NULL;
}
slot->state = PERIPHERAL_SLOT_STATE_OPEN;
// Raise events releasing any active positions from this peripheral
for (int i = 0; i < POSITION_STATE_DATA_LEN; i++) {
for (int j = 0; j < 8; j++) {
if (slot->position_state[i] & BIT(j)) {
uint32_t position = (i * 8) + j;
struct zmk_position_state_changed ev = {.source = index,
.position = position,
.state = false,
.timestamp = k_uptime_get()};
k_msgq_put(&peripheral_event_msgq, &ev, K_NO_WAIT);
k_work_submit(&peripheral_event_work);
}
}
}
for (int i = 0; i < POSITION_STATE_DATA_LEN; i++) {
slot->position_state[i] = 0U;
slot->changed_positions[i] = 0U;
}
// Clean up previously discovered handles;
slot->subscribe_params.value_handle = 0;
slot->run_behavior_handle = 0;
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
slot->update_hid_indicators = 0;
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
return 0;
}
int reserve_peripheral_slot(const bt_addr_le_t *addr) {
int i = zmk_ble_put_peripheral_addr(addr);
if (i >= 0) {
if (peripherals[i].state == PERIPHERAL_SLOT_STATE_OPEN) {
// Be sure the slot is fully reinitialized.
release_peripheral_slot(i);
peripherals[i].state = PERIPHERAL_SLOT_STATE_CONNECTING;
return i;
}
}
return -ENOMEM;
}
int release_peripheral_slot_for_conn(struct bt_conn *conn) {
int idx = peripheral_slot_index_for_conn(conn);
if (idx < 0) {
return idx;
}
return release_peripheral_slot(idx);
}
int confirm_peripheral_slot_conn(struct bt_conn *conn) {
int idx = peripheral_slot_index_for_conn(conn);
if (idx < 0) {
return idx;
}
peripherals[idx].state = PERIPHERAL_SLOT_STATE_CONNECTED;
return 0;
}
#if ZMK_KEYMAP_HAS_SENSORS
K_MSGQ_DEFINE(peripheral_sensor_event_msgq, sizeof(struct zmk_sensor_event),
CONFIG_ZMK_SPLIT_BLE_CENTRAL_POSITION_QUEUE_SIZE, 4);
void peripheral_sensor_event_work_callback(struct k_work *work) {
struct zmk_sensor_event ev;
while (k_msgq_get(&peripheral_sensor_event_msgq, &ev, K_NO_WAIT) == 0) {
LOG_DBG("Trigger sensor change for %d", ev.sensor_index);
ZMK_EVENT_RAISE(new_zmk_sensor_event(ev));
}
}
K_WORK_DEFINE(peripheral_sensor_event_work, peripheral_sensor_event_work_callback);
static uint8_t split_central_sensor_notify_func(struct bt_conn *conn,
struct bt_gatt_subscribe_params *params,
const void *data, uint16_t length) {
if (!data) {
LOG_DBG("[UNSUBSCRIBED]");
params->value_handle = 0U;
return BT_GATT_ITER_STOP;
}
LOG_DBG("[SENSOR NOTIFICATION] data %p length %u", data, length);
if (length < offsetof(struct sensor_event, channel_data)) {
LOG_WRN("Ignoring sensor notify with insufficient data length (%d)", length);
return BT_GATT_ITER_STOP;
}
struct sensor_event sensor_event;
memcpy(&sensor_event, data, MIN(length, sizeof(sensor_event)));
struct zmk_sensor_event ev = {
.sensor_index = sensor_event.sensor_index,
.channel_data_size = MIN(sensor_event.channel_data_size, ZMK_SENSOR_EVENT_MAX_CHANNELS),
.timestamp = k_uptime_get()};
memcpy(ev.channel_data, sensor_event.channel_data,
sizeof(struct zmk_sensor_channel_data) * sensor_event.channel_data_size);
k_msgq_put(&peripheral_sensor_event_msgq, &ev, K_NO_WAIT);
k_work_submit(&peripheral_sensor_event_work);
return BT_GATT_ITER_CONTINUE;
}
#endif /* ZMK_KEYMAP_HAS_SENSORS */
static uint8_t split_central_notify_func(struct bt_conn *conn,
struct bt_gatt_subscribe_params *params, const void *data,
uint16_t length) {
struct peripheral_slot *slot = peripheral_slot_for_conn(conn);
if (slot == NULL) {
LOG_ERR("No peripheral state found for connection");
return BT_GATT_ITER_CONTINUE;
}
if (!data) {
LOG_DBG("[UNSUBSCRIBED]");
params->value_handle = 0U;
return BT_GATT_ITER_STOP;
}
LOG_DBG("[NOTIFICATION] data %p length %u", data, length);
for (int i = 0; i < POSITION_STATE_DATA_LEN; i++) {
slot->changed_positions[i] = ((uint8_t *)data)[i] ^ slot->position_state[i];
slot->position_state[i] = ((uint8_t *)data)[i];
LOG_DBG("data: %d", slot->position_state[i]);
}
for (int i = 0; i < POSITION_STATE_DATA_LEN; i++) {
for (int j = 0; j < 8; j++) {
if (slot->changed_positions[i] & BIT(j)) {
uint32_t position = (i * 8) + j;
bool pressed = slot->position_state[i] & BIT(j);
struct zmk_position_state_changed ev = {.source =
peripheral_slot_index_for_conn(conn),
.position = position,
.state = pressed,
.timestamp = k_uptime_get()};
k_msgq_put(&peripheral_event_msgq, &ev, K_NO_WAIT);
k_work_submit(&peripheral_event_work);
}
}
}
return BT_GATT_ITER_CONTINUE;
}
static int split_central_subscribe(struct bt_conn *conn, struct bt_gatt_subscribe_params *params) {
int err = bt_gatt_subscribe(conn, params);
switch (err) {
case -EALREADY:
LOG_DBG("[ALREADY SUBSCRIBED]");
break;
case 0:
LOG_DBG("[SUBSCRIBED]");
break;
default:
LOG_ERR("Subscribe failed (err %d)", err);
break;
}
return err;
}
static uint8_t split_central_chrc_discovery_func(struct bt_conn *conn,
const struct bt_gatt_attr *attr,
struct bt_gatt_discover_params *params) {
if (!attr) {
LOG_DBG("Discover complete");
return BT_GATT_ITER_STOP;
}
if (!attr->user_data) {
LOG_ERR("Required user data not passed to discovery");
return BT_GATT_ITER_STOP;
}
struct peripheral_slot *slot = peripheral_slot_for_conn(conn);
if (slot == NULL) {
LOG_ERR("No peripheral state found for connection");
return BT_GATT_ITER_STOP;
}
LOG_DBG("[ATTRIBUTE] handle %u", attr->handle);
const struct bt_uuid *chrc_uuid = ((struct bt_gatt_chrc *)attr->user_data)->uuid;
if (bt_uuid_cmp(chrc_uuid, BT_UUID_DECLARE_128(ZMK_SPLIT_BT_CHAR_POSITION_STATE_UUID)) == 0) {
LOG_DBG("Found position state characteristic");
slot->discover_params.uuid = NULL;
slot->discover_params.start_handle = attr->handle + 2;
slot->discover_params.type = BT_GATT_DISCOVER_CHARACTERISTIC;
slot->subscribe_params.disc_params = &slot->sub_discover_params;
slot->subscribe_params.end_handle = slot->discover_params.end_handle;
slot->subscribe_params.value_handle = bt_gatt_attr_value_handle(attr);
slot->subscribe_params.notify = split_central_notify_func;
slot->subscribe_params.value = BT_GATT_CCC_NOTIFY;
split_central_subscribe(conn, &slot->subscribe_params);
#if ZMK_KEYMAP_HAS_SENSORS
} else if (bt_uuid_cmp(chrc_uuid, BT_UUID_DECLARE_128(ZMK_SPLIT_BT_CHAR_SENSOR_STATE_UUID)) ==
0) {
slot->discover_params.uuid = NULL;
slot->discover_params.start_handle = attr->handle + 2;
slot->discover_params.type = BT_GATT_DISCOVER_CHARACTERISTIC;
slot->sensor_subscribe_params.disc_params = &slot->sub_discover_params;
slot->sensor_subscribe_params.end_handle = slot->discover_params.end_handle;
slot->sensor_subscribe_params.value_handle = bt_gatt_attr_value_handle(attr);
slot->sensor_subscribe_params.notify = split_central_sensor_notify_func;
slot->sensor_subscribe_params.value = BT_GATT_CCC_NOTIFY;
split_central_subscribe(conn, &slot->sensor_subscribe_params);
#endif /* ZMK_KEYMAP_HAS_SENSORS */
} else if (bt_uuid_cmp(chrc_uuid, BT_UUID_DECLARE_128(ZMK_SPLIT_BT_CHAR_RUN_BEHAVIOR_UUID)) ==
0) {
LOG_DBG("Found run behavior handle");
slot->discover_params.uuid = NULL;
slot->discover_params.start_handle = attr->handle + 2;
slot->run_behavior_handle = bt_gatt_attr_value_handle(attr);
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
} else if (!bt_uuid_cmp(((struct bt_gatt_chrc *)attr->user_data)->uuid,
BT_UUID_DECLARE_128(ZMK_SPLIT_BT_UPDATE_HID_INDICATORS_UUID))) {
LOG_DBG("Found update HID indicators handle");
slot->update_hid_indicators = bt_gatt_attr_value_handle(attr);
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
}
bool subscribed = (slot->run_behavior_handle && slot->subscribe_params.value_handle);
#if ZMK_KEYMAP_HAS_SENSORS
subscribed = subscribed && slot->sensor_subscribe_params.value_handle;
#endif /* ZMK_KEYMAP_HAS_SENSORS */
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
subscribed = subscribed && slot->update_hid_indicators;
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
return subscribed ? BT_GATT_ITER_STOP : BT_GATT_ITER_CONTINUE;
}
static uint8_t split_central_service_discovery_func(struct bt_conn *conn,
const struct bt_gatt_attr *attr,
struct bt_gatt_discover_params *params) {
if (!attr) {
LOG_DBG("Discover complete");
(void)memset(params, 0, sizeof(*params));
return BT_GATT_ITER_STOP;
}
LOG_DBG("[ATTRIBUTE] handle %u", attr->handle);
struct peripheral_slot *slot = peripheral_slot_for_conn(conn);
if (slot == NULL) {
LOG_ERR("No peripheral state found for connection");
return BT_GATT_ITER_STOP;
}
if (bt_uuid_cmp(slot->discover_params.uuid, BT_UUID_DECLARE_128(ZMK_SPLIT_BT_SERVICE_UUID)) !=
0) {
LOG_DBG("Found other service");
return BT_GATT_ITER_CONTINUE;
}
LOG_DBG("Found split service");
slot->discover_params.uuid = NULL;
slot->discover_params.func = split_central_chrc_discovery_func;
slot->discover_params.start_handle = attr->handle + 1;
slot->discover_params.type = BT_GATT_DISCOVER_CHARACTERISTIC;
int err = bt_gatt_discover(conn, &slot->discover_params);
if (err) {
LOG_ERR("Failed to start discovering split service characteristics (err %d)", err);
}
return BT_GATT_ITER_STOP;
}
static void split_central_process_connection(struct bt_conn *conn) {
int err;
LOG_DBG("Current security for connection: %d", bt_conn_get_security(conn));
err = bt_conn_set_security(conn, BT_SECURITY_L2);
if (err) {
LOG_ERR("Failed to set security (reason %d)", err);
return;
}
struct peripheral_slot *slot = peripheral_slot_for_conn(conn);
if (slot == NULL) {
LOG_ERR("No peripheral state found for connection");
return;
}
if (!slot->subscribe_params.value_handle) {
slot->discover_params.uuid = &split_service_uuid.uuid;
slot->discover_params.func = split_central_service_discovery_func;
slot->discover_params.start_handle = 0x0001;
slot->discover_params.end_handle = 0xffff;
slot->discover_params.type = BT_GATT_DISCOVER_PRIMARY;
err = bt_gatt_discover(slot->conn, &slot->discover_params);
if (err) {
LOG_ERR("Discover failed(err %d)", err);
return;
}
}
struct bt_conn_info info;
bt_conn_get_info(conn, &info);
LOG_DBG("New connection params: Interval: %d, Latency: %d, PHY: %d", info.le.interval,
info.le.latency, info.le.phy->rx_phy);
// Restart scanning if necessary.
start_scanning();
}
static int stop_scanning() {
LOG_DBG("Stopping peripheral scanning");
is_scanning = false;
int err = bt_le_scan_stop();
if (err < 0) {
LOG_ERR("Stop LE scan failed (err %d)", err);
return err;
}
return 0;
}
static bool split_central_eir_found(const bt_addr_le_t *addr) {
LOG_DBG("Found the split service");
// Reserve peripheral slot. Once the central has bonded to its peripherals,
// the peripheral MAC addresses will be validated internally and the slot
// reservation will fail if there is a mismatch.
int slot_idx = reserve_peripheral_slot(addr);
if (slot_idx < 0) {
LOG_INF("Unable to reserve peripheral slot (err %d)", slot_idx);
return false;
}
struct peripheral_slot *slot = &peripherals[slot_idx];
// Stop scanning so we can connect to the peripheral device.
int err = stop_scanning();
if (err < 0) {
return false;
}
LOG_DBG("Initiating new connnection");
struct bt_le_conn_param *param =
BT_LE_CONN_PARAM(CONFIG_ZMK_SPLIT_BLE_PREF_INT, CONFIG_ZMK_SPLIT_BLE_PREF_INT,
CONFIG_ZMK_SPLIT_BLE_PREF_LATENCY, CONFIG_ZMK_SPLIT_BLE_PREF_TIMEOUT);
err = bt_conn_le_create(addr, BT_CONN_LE_CREATE_CONN, param, &slot->conn);
if (err < 0) {
LOG_ERR("Create conn failed (err %d) (create conn? 0x%04x)", err, BT_HCI_OP_LE_CREATE_CONN);
release_peripheral_slot(slot_idx);
start_scanning();
}
return false;
}
static bool split_central_eir_parse(struct bt_data *data, void *user_data) {
bt_addr_le_t *addr = user_data;
int i;
LOG_DBG("[AD]: %u data_len %u", data->type, data->data_len);
switch (data->type) {
case BT_DATA_UUID128_SOME:
case BT_DATA_UUID128_ALL:
if (data->data_len % 16 != 0U) {
LOG_ERR("AD malformed");
return true;
}
for (i = 0; i < data->data_len; i += 16) {
struct bt_uuid_128 uuid;
if (!bt_uuid_create(&uuid.uuid, &data->data[i], 16)) {
LOG_ERR("Unable to load UUID");
continue;
}
if (bt_uuid_cmp(&uuid.uuid, BT_UUID_DECLARE_128(ZMK_SPLIT_BT_SERVICE_UUID)) != 0) {
char uuid_str[BT_UUID_STR_LEN];
char service_uuid_str[BT_UUID_STR_LEN];
bt_uuid_to_str(&uuid.uuid, uuid_str, sizeof(uuid_str));
bt_uuid_to_str(BT_UUID_DECLARE_128(ZMK_SPLIT_BT_SERVICE_UUID), service_uuid_str,
sizeof(service_uuid_str));
LOG_DBG("UUID %s does not match split UUID: %s", uuid_str, service_uuid_str);
continue;
}
return split_central_eir_found(addr);
}
}
return true;
}
static void split_central_device_found(const bt_addr_le_t *addr, int8_t rssi, uint8_t type,
struct net_buf_simple *ad) {
char dev[BT_ADDR_LE_STR_LEN];
bt_addr_le_to_str(addr, dev, sizeof(dev));
LOG_DBG("[DEVICE]: %s, AD evt type %u, AD data len %u, RSSI %i", dev, type, ad->len, rssi);
/* We're only interested in connectable events */
if (type == BT_GAP_ADV_TYPE_ADV_IND) {
bt_data_parse(ad, split_central_eir_parse, (void *)addr);
} else if (type == BT_GAP_ADV_TYPE_ADV_DIRECT_IND) {
split_central_eir_found(addr);
}
}
static int start_scanning(void) {
// No action is necessary if central is already scanning.
if (is_scanning) {
LOG_DBG("Scanning already running");
return 0;
}
// If all the devices are connected, there is no need to scan.
bool has_unconnected = false;
for (int i = 0; i < CONFIG_ZMK_SPLIT_BLE_CENTRAL_PERIPHERALS; i++) {
if (peripherals[i].conn == NULL) {
has_unconnected = true;
break;
}
}
if (!has_unconnected) {
LOG_DBG("All devices are connected, scanning is unnecessary");
return 0;
}
// Start scanning otherwise.
is_scanning = true;
int err = bt_le_scan_start(BT_LE_SCAN_PASSIVE, split_central_device_found);
if (err < 0) {
LOG_ERR("Scanning failed to start (err %d)", err);
return err;
}
LOG_DBG("Scanning successfully started");
return 0;
}
static void split_central_connected(struct bt_conn *conn, uint8_t conn_err) {
char addr[BT_ADDR_LE_STR_LEN];
struct bt_conn_info info;
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
bt_conn_get_info(conn, &info);
if (info.role != BT_CONN_ROLE_CENTRAL) {
LOG_DBG("SKIPPING FOR ROLE %d", info.role);
return;
}
if (conn_err) {
LOG_ERR("Failed to connect to %s (%u)", addr, conn_err);
release_peripheral_slot_for_conn(conn);
start_scanning();
return;
}
LOG_DBG("Connected: %s", addr);
confirm_peripheral_slot_conn(conn);
split_central_process_connection(conn);
}
static void split_central_disconnected(struct bt_conn *conn, uint8_t reason) {
char addr[BT_ADDR_LE_STR_LEN];
int err;
bt_addr_le_to_str(bt_conn_get_dst(conn), addr, sizeof(addr));
LOG_DBG("Disconnected: %s (reason %d)", addr, reason);
err = release_peripheral_slot_for_conn(conn);
if (err < 0) {
return;
}
start_scanning();
}
static struct bt_conn_cb conn_callbacks = {
.connected = split_central_connected,
.disconnected = split_central_disconnected,
};
K_THREAD_STACK_DEFINE(split_central_split_run_q_stack,
CONFIG_ZMK_SPLIT_BLE_CENTRAL_SPLIT_RUN_STACK_SIZE);
struct k_work_q split_central_split_run_q;
struct zmk_split_run_behavior_payload_wrapper {
uint8_t source;
struct zmk_split_run_behavior_payload payload;
};
K_MSGQ_DEFINE(zmk_split_central_split_run_msgq,
sizeof(struct zmk_split_run_behavior_payload_wrapper),
CONFIG_ZMK_SPLIT_BLE_CENTRAL_SPLIT_RUN_QUEUE_SIZE, 4);
void split_central_split_run_callback(struct k_work *work) {
struct zmk_split_run_behavior_payload_wrapper payload_wrapper;
LOG_DBG("");
while (k_msgq_get(&zmk_split_central_split_run_msgq, &payload_wrapper, K_NO_WAIT) == 0) {
if (peripherals[payload_wrapper.source].state != PERIPHERAL_SLOT_STATE_CONNECTED) {
LOG_ERR("Source not connected");
continue;
}
if (!peripherals[payload_wrapper.source].run_behavior_handle) {
LOG_ERR("Run behavior handle not found");
continue;
}
int err = bt_gatt_write_without_response(
peripherals[payload_wrapper.source].conn,
peripherals[payload_wrapper.source].run_behavior_handle, &payload_wrapper.payload,
sizeof(struct zmk_split_run_behavior_payload), true);
if (err) {
LOG_ERR("Failed to write the behavior characteristic (err %d)", err);
}
}
}
K_WORK_DEFINE(split_central_split_run_work, split_central_split_run_callback);
static int
split_bt_invoke_behavior_payload(struct zmk_split_run_behavior_payload_wrapper payload_wrapper) {
LOG_DBG("");
int err = k_msgq_put(&zmk_split_central_split_run_msgq, &payload_wrapper, K_MSEC(100));
if (err) {
switch (err) {
case -EAGAIN: {
LOG_WRN("Consumer message queue full, popping first message and queueing again");
struct zmk_split_run_behavior_payload_wrapper discarded_report;
k_msgq_get(&zmk_split_central_split_run_msgq, &discarded_report, K_NO_WAIT);
return split_bt_invoke_behavior_payload(payload_wrapper);
}
default:
LOG_WRN("Failed to queue behavior to send (%d)", err);
return err;
}
}
k_work_submit_to_queue(&split_central_split_run_q, &split_central_split_run_work);
return 0;
};
int zmk_split_bt_invoke_behavior(uint8_t source, struct zmk_behavior_binding *binding,
struct zmk_behavior_binding_event event, bool state) {
struct zmk_split_run_behavior_payload payload = {.data = {
.param1 = binding->param1,
.param2 = binding->param2,
.position = event.position,
.state = state ? 1 : 0,
}};
const size_t payload_dev_size = sizeof(payload.behavior_dev);
if (strlcpy(payload.behavior_dev, binding->behavior_dev, payload_dev_size) >=
payload_dev_size) {
LOG_ERR("Truncated behavior label %s to %s before invoking peripheral behavior",
binding->behavior_dev, payload.behavior_dev);
}
struct zmk_split_run_behavior_payload_wrapper wrapper = {.source = source, .payload = payload};
return split_bt_invoke_behavior_payload(wrapper);
}
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
static zmk_hid_indicators hid_indicators = 0;
static void split_central_update_indicators_callback(struct k_work *work) {
zmk_hid_indicators indicators = hid_indicators;
for (int i = 0; i < ZMK_SPLIT_BLE_PERIPHERAL_COUNT; i++) {
if (peripherals[i].state != PERIPHERAL_SLOT_STATE_CONNECTED) {
continue;
}
if (peripherals[i].update_hid_indicators == 0) {
// It appears that sometimes the peripheral is considered connected
// before the GATT characteristics have been discovered. If this is
// the case, the update_hid_indicators handle will not yet be set.
continue;
}
int err = bt_gatt_write_without_response(peripherals[i].conn,
peripherals[i].update_hid_indicators, &indicators,
sizeof(indicators), true);
if (err) {
LOG_ERR("Failed to write HID indicator characteristic (err %d)", err);
}
}
}
static K_WORK_DEFINE(split_central_update_indicators, split_central_update_indicators_callback);
int zmk_split_bt_update_hid_indicator(zmk_hid_indicators indicators) {
hid_indicators = indicators;
return k_work_submit_to_queue(&split_central_split_run_q, &split_central_update_indicators);
}
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
int zmk_split_bt_central_init(const struct device *_arg) {
k_work_queue_start(&split_central_split_run_q, split_central_split_run_q_stack,
K_THREAD_STACK_SIZEOF(split_central_split_run_q_stack),
CONFIG_ZMK_BLE_THREAD_PRIORITY, NULL);
bt_conn_cb_register(&conn_callbacks);
return IS_ENABLED(CONFIG_ZMK_BLE_CLEAR_BONDS_ON_START) ? 0 : start_scanning();
}
SYS_INIT(zmk_split_bt_central_init, APPLICATION, CONFIG_ZMK_BLE_INIT_PRIORITY);