zmk/app/src/split/bluetooth/service.c
2023-11-27 16:03:18 -08:00

277 lines
10 KiB
C

/*
* Copyright (c) 2020 The ZMK Contributors
*
* SPDX-License-Identifier: MIT
*/
#include <zephyr/drivers/sensor.h>
#include <zephyr/types.h>
#include <zephyr/sys/util.h>
#include <zephyr/init.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(zmk, CONFIG_ZMK_LOG_LEVEL);
#include <zephyr/bluetooth/gatt.h>
#include <zephyr/bluetooth/uuid.h>
#include <drivers/behavior.h>
#include <zmk/behavior.h>
#include <zmk/matrix.h>
#include <zmk/split/bluetooth/uuid.h>
#include <zmk/split/bluetooth/service.h>
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
#include <zmk/events/hid_indicators_changed.h>
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
#include <zmk/events/sensor_event.h>
#include <zmk/sensors.h>
#if ZMK_KEYMAP_HAS_SENSORS
static struct sensor_event last_sensor_event;
static ssize_t split_svc_sensor_state(struct bt_conn *conn, const struct bt_gatt_attr *attrs,
void *buf, uint16_t len, uint16_t offset) {
return bt_gatt_attr_read(conn, attrs, buf, len, offset, &last_sensor_event,
sizeof(last_sensor_event));
}
static void split_svc_sensor_state_ccc(const struct bt_gatt_attr *attr, uint16_t value) {
LOG_DBG("value %d", value);
}
#endif /* ZMK_KEYMAP_HAS_SENSORS */
#define POS_STATE_LEN 16
static uint8_t num_of_positions = ZMK_KEYMAP_LEN;
static uint8_t position_state[POS_STATE_LEN];
static struct zmk_split_run_behavior_payload behavior_run_payload;
static ssize_t split_svc_pos_state(struct bt_conn *conn, const struct bt_gatt_attr *attrs,
void *buf, uint16_t len, uint16_t offset) {
return bt_gatt_attr_read(conn, attrs, buf, len, offset, &position_state,
sizeof(position_state));
}
static ssize_t split_svc_run_behavior(struct bt_conn *conn, const struct bt_gatt_attr *attrs,
const void *buf, uint16_t len, uint16_t offset,
uint8_t flags) {
struct zmk_split_run_behavior_payload *payload = attrs->user_data;
uint16_t end_addr = offset + len;
LOG_DBG("offset %d len %d", offset, len);
if (end_addr > sizeof(struct zmk_split_run_behavior_payload)) {
return BT_GATT_ERR(BT_ATT_ERR_INVALID_OFFSET);
}
memcpy(payload + offset, buf, len);
// We run if:
// 1: We've gotten all the position/state/param data.
// 2: We have a null terminated string for the behavior device label.
const size_t behavior_dev_offset =
offsetof(struct zmk_split_run_behavior_payload, behavior_dev);
if ((end_addr > sizeof(struct zmk_split_run_behavior_data)) &&
payload->behavior_dev[end_addr - behavior_dev_offset - 1] == '\0') {
struct zmk_behavior_binding binding = {
.param1 = payload->data.param1,
.param2 = payload->data.param2,
.behavior_dev = payload->behavior_dev,
};
LOG_DBG("%s with params %d %d: pressed? %d", binding.behavior_dev, binding.param1,
binding.param2, payload->data.state);
struct zmk_behavior_binding_event event = {.position = payload->data.position,
.timestamp = k_uptime_get()};
int err;
if (payload->data.state > 0) {
err = behavior_keymap_binding_pressed(&binding, event);
} else {
err = behavior_keymap_binding_released(&binding, event);
}
if (err) {
LOG_ERR("Failed to invoke behavior %s: %d", binding.behavior_dev, err);
}
}
return len;
}
static ssize_t split_svc_num_of_positions(struct bt_conn *conn, const struct bt_gatt_attr *attrs,
void *buf, uint16_t len, uint16_t offset) {
return bt_gatt_attr_read(conn, attrs, buf, len, offset, attrs->user_data, sizeof(uint8_t));
}
static void split_svc_pos_state_ccc(const struct bt_gatt_attr *attr, uint16_t value) {
LOG_DBG("value %d", value);
}
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
static zmk_hid_indicators hid_indicators = 0;
static void split_svc_update_indicators_callback(struct k_work *work) {
LOG_DBG("Raising HID indicators changed event: %x", hid_indicators);
ZMK_EVENT_RAISE(new_zmk_hid_indicators_changed(
(struct zmk_hid_indicators_changed){.indicators = hid_indicators}));
}
static K_WORK_DEFINE(split_svc_update_indicators_work, split_svc_update_indicators_callback);
static ssize_t split_svc_update_indicators(struct bt_conn *conn, const struct bt_gatt_attr *attr,
const void *buf, uint16_t len, uint16_t offset,
uint8_t flags) {
if (offset + len > sizeof(zmk_hid_indicators)) {
return BT_GATT_ERR(BT_ATT_ERR_INVALID_OFFSET);
}
memcpy((uint8_t *)&hid_indicators + offset, buf, len);
k_work_submit(&split_svc_update_indicators_work);
return len;
}
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
BT_GATT_SERVICE_DEFINE(
split_svc, BT_GATT_PRIMARY_SERVICE(BT_UUID_DECLARE_128(ZMK_SPLIT_BT_SERVICE_UUID)),
BT_GATT_CHARACTERISTIC(BT_UUID_DECLARE_128(ZMK_SPLIT_BT_CHAR_POSITION_STATE_UUID),
BT_GATT_CHRC_READ | BT_GATT_CHRC_NOTIFY, BT_GATT_PERM_READ_ENCRYPT,
split_svc_pos_state, NULL, &position_state),
BT_GATT_CCC(split_svc_pos_state_ccc, BT_GATT_PERM_READ_ENCRYPT | BT_GATT_PERM_WRITE_ENCRYPT),
BT_GATT_CHARACTERISTIC(BT_UUID_DECLARE_128(ZMK_SPLIT_BT_CHAR_RUN_BEHAVIOR_UUID),
BT_GATT_CHRC_WRITE_WITHOUT_RESP, BT_GATT_PERM_WRITE_ENCRYPT, NULL,
split_svc_run_behavior, &behavior_run_payload),
BT_GATT_DESCRIPTOR(BT_UUID_NUM_OF_DIGITALS, BT_GATT_PERM_READ, split_svc_num_of_positions, NULL,
&num_of_positions),
#if ZMK_KEYMAP_HAS_SENSORS
BT_GATT_CHARACTERISTIC(BT_UUID_DECLARE_128(ZMK_SPLIT_BT_CHAR_SENSOR_STATE_UUID),
BT_GATT_CHRC_READ | BT_GATT_CHRC_NOTIFY, BT_GATT_PERM_READ_ENCRYPT,
split_svc_sensor_state, NULL, &last_sensor_event),
BT_GATT_CCC(split_svc_sensor_state_ccc, BT_GATT_PERM_READ_ENCRYPT | BT_GATT_PERM_WRITE_ENCRYPT),
#endif /* ZMK_KEYMAP_HAS_SENSORS */
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
BT_GATT_CHARACTERISTIC(BT_UUID_DECLARE_128(ZMK_SPLIT_BT_UPDATE_HID_INDICATORS_UUID),
BT_GATT_CHRC_WRITE_WITHOUT_RESP, BT_GATT_PERM_WRITE_ENCRYPT, NULL,
split_svc_update_indicators, NULL),
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
);
K_THREAD_STACK_DEFINE(service_q_stack, CONFIG_ZMK_SPLIT_BLE_PERIPHERAL_STACK_SIZE);
struct k_work_q service_work_q;
K_MSGQ_DEFINE(position_state_msgq, sizeof(char[POS_STATE_LEN]),
CONFIG_ZMK_SPLIT_BLE_PERIPHERAL_POSITION_QUEUE_SIZE, 4);
void send_position_state_callback(struct k_work *work) {
uint8_t state[POS_STATE_LEN];
while (k_msgq_get(&position_state_msgq, &state, K_NO_WAIT) == 0) {
int err = bt_gatt_notify(NULL, &split_svc.attrs[1], &state, sizeof(state));
if (err) {
LOG_DBG("Error notifying %d", err);
}
}
};
K_WORK_DEFINE(service_position_notify_work, send_position_state_callback);
int send_position_state() {
int err = k_msgq_put(&position_state_msgq, position_state, K_MSEC(100));
if (err) {
switch (err) {
case -EAGAIN: {
LOG_WRN("Position state message queue full, popping first message and queueing again");
uint8_t discarded_state[POS_STATE_LEN];
k_msgq_get(&position_state_msgq, &discarded_state, K_NO_WAIT);
return send_position_state();
}
default:
LOG_WRN("Failed to queue position state to send (%d)", err);
return err;
}
}
k_work_submit_to_queue(&service_work_q, &service_position_notify_work);
return 0;
}
int zmk_split_bt_position_pressed(uint8_t position) {
WRITE_BIT(position_state[position / 8], position % 8, true);
return send_position_state();
}
int zmk_split_bt_position_released(uint8_t position) {
WRITE_BIT(position_state[position / 8], position % 8, false);
return send_position_state();
}
#if ZMK_KEYMAP_HAS_SENSORS
K_MSGQ_DEFINE(sensor_state_msgq, sizeof(struct sensor_event),
CONFIG_ZMK_SPLIT_BLE_PERIPHERAL_POSITION_QUEUE_SIZE, 4);
void send_sensor_state_callback(struct k_work *work) {
while (k_msgq_get(&sensor_state_msgq, &last_sensor_event, K_NO_WAIT) == 0) {
int err = bt_gatt_notify(NULL, &split_svc.attrs[8], &last_sensor_event,
sizeof(last_sensor_event));
if (err) {
LOG_DBG("Error notifying %d", err);
}
}
};
K_WORK_DEFINE(service_sensor_notify_work, send_sensor_state_callback);
int send_sensor_state(struct sensor_event ev) {
int err = k_msgq_put(&sensor_state_msgq, &ev, K_MSEC(100));
if (err) {
// retry...
switch (err) {
case -EAGAIN: {
LOG_WRN("Sensor state message queue full, popping first message and queueing again");
struct sensor_event discarded_state;
k_msgq_get(&sensor_state_msgq, &discarded_state, K_NO_WAIT);
return send_sensor_state(ev);
}
default:
LOG_WRN("Failed to queue sensor state to send (%d)", err);
return err;
}
}
k_work_submit_to_queue(&service_work_q, &service_sensor_notify_work);
return 0;
}
int zmk_split_bt_sensor_triggered(uint8_t sensor_index,
const struct zmk_sensor_channel_data channel_data[],
size_t channel_data_size) {
if (channel_data_size > ZMK_SENSOR_EVENT_MAX_CHANNELS) {
return -EINVAL;
}
struct sensor_event ev =
(struct sensor_event){.sensor_index = sensor_index, .channel_data_size = channel_data_size};
memcpy(ev.channel_data, channel_data,
channel_data_size * sizeof(struct zmk_sensor_channel_data));
return send_sensor_state(ev);
}
#endif /* ZMK_KEYMAP_HAS_SENSORS */
int service_init(const struct device *_arg) {
static const struct k_work_queue_config queue_config = {
.name = "Split Peripheral Notification Queue"};
k_work_queue_start(&service_work_q, service_q_stack, K_THREAD_STACK_SIZEOF(service_q_stack),
CONFIG_ZMK_SPLIT_BLE_PERIPHERAL_PRIORITY, &queue_config);
return 0;
}
SYS_INIT(service_init, APPLICATION, CONFIG_ZMK_BLE_INIT_PRIORITY);