This commit is contained in:
Xudong Zheng 2024-09-02 17:26:46 +05:30 committed by GitHub
commit bc94eac70f
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
21 changed files with 753 additions and 276 deletions

View file

@ -8,8 +8,8 @@
#include <zmk/hid_indicators_types.h> #include <zmk/hid_indicators_types.h>
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS) #endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
int zmk_split_bt_invoke_behavior(uint8_t source, struct zmk_behavior_binding *binding, int zmk_split_invoke_behavior(uint8_t source, struct zmk_behavior_binding *binding,
struct zmk_behavior_binding_event event, bool state); struct zmk_behavior_binding_event event, bool state);
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS) #if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)

View file

@ -0,0 +1,19 @@
/*
* Copyright (c) 2023 The ZMK Contributors
*
* SPDX-License-Identifier: MIT
*/
#pragma once
#include <zmk/events/position_state_changed.h>
#include <zmk/events/sensor_event.h>
#include <zmk/split/service.h>
void zmk_position_state_change_handle(struct zmk_position_state_changed *ev);
#if ZMK_KEYMAP_HAS_SENSORS
void zmk_sensor_event_handle(struct zmk_sensor_event *ev);
#endif
void send_split_run_impl(struct zmk_split_run_behavior_payload_wrapper *payload_wrapper);

View file

@ -0,0 +1,28 @@
/*
* Copyright (c) 2023 The ZMK Contributors
*
* SPDX-License-Identifier: MIT
*/
#pragma once
#include <zephyr/sys/ring_buffer.h>
// The serial protocol is defined for payloads of up to 254 bytes. This should
// be large enough to ensure that one message can be fully buffered.
#define SERIAL_BUF_SIZE 300
struct serial_device {
const struct device *dev;
uint8_t rx_buf[SERIAL_BUF_SIZE], tx_buf[SERIAL_BUF_SIZE];
struct ring_buf rx_rb, tx_rb;
struct k_work rx_work;
#ifdef CONFIG_ZMK_SPLIT_SERIAL_UART_POLL
bool poll;
struct k_work tx_work;
struct k_timer rx_timer;
#endif
};
void serial_handle_rx(uint32_t cmd, uint8_t *data, uint8_t len);

View file

@ -10,6 +10,7 @@
#include <zmk/sensors.h> #include <zmk/sensors.h>
#define ZMK_SPLIT_RUN_BEHAVIOR_DEV_LEN 9 #define ZMK_SPLIT_RUN_BEHAVIOR_DEV_LEN 9
#define ZMK_SPLIT_POS_STATE_LEN 16
struct sensor_event { struct sensor_event {
uint8_t sensor_index; uint8_t sensor_index;
@ -30,8 +31,18 @@ struct zmk_split_run_behavior_payload {
char behavior_dev[ZMK_SPLIT_RUN_BEHAVIOR_DEV_LEN]; char behavior_dev[ZMK_SPLIT_RUN_BEHAVIOR_DEV_LEN];
} __packed; } __packed;
int zmk_split_bt_position_pressed(uint8_t position); struct zmk_split_run_behavior_payload_wrapper {
int zmk_split_bt_position_released(uint8_t position); uint8_t source;
int zmk_split_bt_sensor_triggered(uint8_t sensor_index, struct zmk_split_run_behavior_payload payload;
const struct zmk_sensor_channel_data channel_data[], };
size_t channel_data_size);
int zmk_split_position_pressed(uint8_t position);
int zmk_split_position_released(uint8_t position);
int zmk_split_sensor_triggered(uint8_t sensor_index,
const struct zmk_sensor_channel_data channel_data[],
size_t channel_data_size);
void send_position_state_impl(uint8_t *state, int len);
#if ZMK_KEYMAP_HAS_SENSORS
void send_sensor_state_impl(struct sensor_event *event, int len);
#endif

View file

@ -214,7 +214,7 @@ int zmk_keymap_apply_position_state(uint8_t source, int layer, uint32_t position
if (source == ZMK_POSITION_STATE_CHANGE_SOURCE_LOCAL) { if (source == ZMK_POSITION_STATE_CHANGE_SOURCE_LOCAL) {
return invoke_locally(&binding, event, pressed); return invoke_locally(&binding, event, pressed);
} else { } else {
return zmk_split_bt_invoke_behavior(source, &binding, event, pressed); return zmk_split_invoke_behavior(source, &binding, event, pressed);
} }
#else #else
return invoke_locally(&binding, event, pressed); return invoke_locally(&binding, event, pressed);
@ -222,7 +222,7 @@ int zmk_keymap_apply_position_state(uint8_t source, int layer, uint32_t position
case BEHAVIOR_LOCALITY_GLOBAL: case BEHAVIOR_LOCALITY_GLOBAL:
#if ZMK_BLE_IS_CENTRAL #if ZMK_BLE_IS_CENTRAL
for (int i = 0; i < ZMK_SPLIT_BLE_PERIPHERAL_COUNT; i++) { for (int i = 0; i < ZMK_SPLIT_BLE_PERIPHERAL_COUNT; i++) {
zmk_split_bt_invoke_behavior(i, &binding, event, pressed); zmk_split_invoke_behavior(i, &binding, event, pressed);
} }
#endif #endif
return invoke_locally(&binding, event, pressed); return invoke_locally(&binding, event, pressed);

View file

@ -1,6 +1,23 @@
# Copyright (c) 2022 The ZMK Contributors # Copyright (c) 2022 The ZMK Contributors
# SPDX-License-Identifier: MIT # SPDX-License-Identifier: MIT
if (NOT CONFIG_ZMK_SPLIT_ROLE_CENTRAL)
if (CONFIG_ZMK_SPLIT_BLE OR CONFIG_ZMK_SPLIT_SERIAL)
target_sources(app PRIVATE listener.c)
target_sources(app PRIVATE service.c)
endif()
endif()
if (CONFIG_ZMK_SPLIT_ROLE_CENTRAL)
if (CONFIG_ZMK_SPLIT_BLE OR CONFIG_ZMK_SPLIT_SERIAL)
target_sources(app PRIVATE central.c)
endif()
endif()
if (CONFIG_ZMK_SPLIT_BLE) if (CONFIG_ZMK_SPLIT_BLE)
add_subdirectory(bluetooth) add_subdirectory(bluetooth)
endif() endif()
if (CONFIG_ZMK_SPLIT_SERIAL)
add_subdirectory(serial)
endif()

View file

@ -6,19 +6,59 @@ menuconfig ZMK_SPLIT
if ZMK_SPLIT if ZMK_SPLIT
config ZMK_SPLIT_INIT_PRIORITY
int "Split Init Priority"
default 50
config ZMK_SPLIT_ROLE_CENTRAL config ZMK_SPLIT_ROLE_CENTRAL
bool "Split central device" bool "Split central device"
choice ZMK_SPLIT_TRANSPORT if ZMK_SPLIT_ROLE_CENTRAL
prompt "Split transport"
config ZMK_SPLIT_CENTRAL_POSITION_QUEUE_SIZE
int "Max number of key position state events to queue when received from peripherals"
default 5
config ZMK_SPLIT_CENTRAL_SPLIT_RUN_STACK_SIZE
int "Split central write thread stack size"
default 512
config ZMK_SPLIT_CENTRAL_SPLIT_RUN_QUEUE_SIZE
int "Max number of behavior run events to queue to send to the peripheral(s)"
default 5
config ZMK_SPLIT_CENTRAL_PRIORITY
int "Split central thread priority"
default 5
endif # ZMK_SPLIT_ROLE_CENTRAL
if !ZMK_SPLIT_ROLE_CENTRAL
config ZMK_SPLIT_PERIPHERAL_STACK_SIZE
int "Split peripheral notify thread stack size"
default 756
config ZMK_SPLIT_PERIPHERAL_PRIORITY
int "Split peripheral notify thread priority"
default 5
config ZMK_SPLIT_PERIPHERAL_POSITION_QUEUE_SIZE
int "Max number of key position state events to queue to send to the central"
default 10
endif #!ZMK_SPLIT_ROLE_CENTRAL
config ZMK_SPLIT_BLE config ZMK_SPLIT_BLE
bool "BLE" bool "BLE"
default ZMK_SPLIT && ZMK_BLE
depends on ZMK_BLE depends on ZMK_BLE
select BT_USER_PHY_UPDATE select BT_USER_PHY_UPDATE
select BT_AUTO_PHY_UPDATE select BT_AUTO_PHY_UPDATE
endchoice config ZMK_SPLIT_SERIAL
bool "Serial"
select RING_BUFFER
config ZMK_SPLIT_PERIPHERAL_HID_INDICATORS config ZMK_SPLIT_PERIPHERAL_HID_INDICATORS
bool "Peripheral HID Indicators" bool "Peripheral HID Indicators"
@ -30,3 +70,4 @@ config ZMK_SPLIT_PERIPHERAL_HID_INDICATORS
endif endif
rsource "bluetooth/Kconfig" rsource "bluetooth/Kconfig"
rsource "serial/Kconfig"

View file

@ -2,10 +2,10 @@
# SPDX-License-Identifier: MIT # SPDX-License-Identifier: MIT
if (NOT CONFIG_ZMK_SPLIT_ROLE_CENTRAL) if (NOT CONFIG_ZMK_SPLIT_ROLE_CENTRAL)
target_sources(app PRIVATE split_listener.c)
target_sources(app PRIVATE service.c) target_sources(app PRIVATE service.c)
target_sources(app PRIVATE peripheral.c) target_sources(app PRIVATE peripheral.c)
endif() endif()
if (CONFIG_ZMK_SPLIT_ROLE_CENTRAL) if (CONFIG_ZMK_SPLIT_ROLE_CENTRAL)
target_sources(app PRIVATE central.c) target_sources(app PRIVATE central.c)
endif() endif()

View file

@ -46,18 +46,6 @@ config ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_PROXY
endif endif
config ZMK_SPLIT_BLE_CENTRAL_POSITION_QUEUE_SIZE
int "Max number of key position state events to queue when received from peripherals"
default 5
config ZMK_SPLIT_BLE_CENTRAL_SPLIT_RUN_STACK_SIZE
int "BLE split central write thread stack size"
default 512
config ZMK_SPLIT_BLE_CENTRAL_SPLIT_RUN_QUEUE_SIZE
int "Max number of behavior run events to queue to send to the peripheral(s)"
default 5
config ZMK_SPLIT_BLE_PREF_INT config ZMK_SPLIT_BLE_PREF_INT
int "Connection interval to use for split central/peripheral connection" int "Connection interval to use for split central/peripheral connection"
default 6 default 6
@ -74,18 +62,6 @@ endif # ZMK_SPLIT_ROLE_CENTRAL
if !ZMK_SPLIT_ROLE_CENTRAL if !ZMK_SPLIT_ROLE_CENTRAL
config ZMK_SPLIT_BLE_PERIPHERAL_STACK_SIZE
int "BLE split peripheral notify thread stack size"
default 756
config ZMK_SPLIT_BLE_PERIPHERAL_PRIORITY
int "BLE split peripheral notify thread priority"
default 5
config ZMK_SPLIT_BLE_PERIPHERAL_POSITION_QUEUE_SIZE
int "Max number of key position state events to queue to send to the central"
default 10
config BT_MAX_PAIRED config BT_MAX_PAIRED
default 1 default 1

View file

@ -24,7 +24,8 @@ LOG_MODULE_DECLARE(zmk, CONFIG_ZMK_LOG_LEVEL);
#include <zmk/behavior.h> #include <zmk/behavior.h>
#include <zmk/sensors.h> #include <zmk/sensors.h>
#include <zmk/split/bluetooth/uuid.h> #include <zmk/split/bluetooth/uuid.h>
#include <zmk/split/bluetooth/service.h> #include <zmk/split/central.h>
#include <zmk/split/service.h>
#include <zmk/event_manager.h> #include <zmk/event_manager.h>
#include <zmk/events/position_state_changed.h> #include <zmk/events/position_state_changed.h>
#include <zmk/events/sensor_event.h> #include <zmk/events/sensor_event.h>
@ -66,19 +67,6 @@ static bool is_scanning = false;
static const struct bt_uuid_128 split_service_uuid = BT_UUID_INIT_128(ZMK_SPLIT_BT_SERVICE_UUID); static const struct bt_uuid_128 split_service_uuid = BT_UUID_INIT_128(ZMK_SPLIT_BT_SERVICE_UUID);
K_MSGQ_DEFINE(peripheral_event_msgq, sizeof(struct zmk_position_state_changed),
CONFIG_ZMK_SPLIT_BLE_CENTRAL_POSITION_QUEUE_SIZE, 4);
void peripheral_event_work_callback(struct k_work *work) {
struct zmk_position_state_changed ev;
while (k_msgq_get(&peripheral_event_msgq, &ev, K_NO_WAIT) == 0) {
LOG_DBG("Trigger key position state change for %d", ev.position);
raise_zmk_position_state_changed(ev);
}
}
K_WORK_DEFINE(peripheral_event_work, peripheral_event_work_callback);
int peripheral_slot_index_for_conn(struct bt_conn *conn) { int peripheral_slot_index_for_conn(struct bt_conn *conn) {
for (int i = 0; i < ZMK_SPLIT_BLE_PERIPHERAL_COUNT; i++) { for (int i = 0; i < ZMK_SPLIT_BLE_PERIPHERAL_COUNT; i++) {
if (peripherals[i].conn == conn) { if (peripherals[i].conn == conn) {
@ -126,9 +114,7 @@ int release_peripheral_slot(int index) {
.position = position, .position = position,
.state = false, .state = false,
.timestamp = k_uptime_get()}; .timestamp = k_uptime_get()};
zmk_position_state_change_handle(&ev);
k_msgq_put(&peripheral_event_msgq, &ev, K_NO_WAIT);
k_work_submit(&peripheral_event_work);
} }
} }
} }
@ -182,19 +168,6 @@ int confirm_peripheral_slot_conn(struct bt_conn *conn) {
} }
#if ZMK_KEYMAP_HAS_SENSORS #if ZMK_KEYMAP_HAS_SENSORS
K_MSGQ_DEFINE(peripheral_sensor_event_msgq, sizeof(struct zmk_sensor_event),
CONFIG_ZMK_SPLIT_BLE_CENTRAL_POSITION_QUEUE_SIZE, 4);
void peripheral_sensor_event_work_callback(struct k_work *work) {
struct zmk_sensor_event ev;
while (k_msgq_get(&peripheral_sensor_event_msgq, &ev, K_NO_WAIT) == 0) {
LOG_DBG("Trigger sensor change for %d", ev.sensor_index);
raise_zmk_sensor_event(ev);
}
}
K_WORK_DEFINE(peripheral_sensor_event_work, peripheral_sensor_event_work_callback);
static uint8_t split_central_sensor_notify_func(struct bt_conn *conn, static uint8_t split_central_sensor_notify_func(struct bt_conn *conn,
struct bt_gatt_subscribe_params *params, struct bt_gatt_subscribe_params *params,
const void *data, uint16_t length) { const void *data, uint16_t length) {
@ -220,8 +193,7 @@ static uint8_t split_central_sensor_notify_func(struct bt_conn *conn,
memcpy(ev.channel_data, sensor_event.channel_data, memcpy(ev.channel_data, sensor_event.channel_data,
sizeof(struct zmk_sensor_channel_data) * sensor_event.channel_data_size); sizeof(struct zmk_sensor_channel_data) * sensor_event.channel_data_size);
k_msgq_put(&peripheral_sensor_event_msgq, &ev, K_NO_WAIT); zmk_sensor_event_handle(&ev);
k_work_submit(&peripheral_sensor_event_work);
return BT_GATT_ITER_CONTINUE; return BT_GATT_ITER_CONTINUE;
} }
@ -261,9 +233,7 @@ static uint8_t split_central_notify_func(struct bt_conn *conn,
.position = position, .position = position,
.state = pressed, .state = pressed,
.timestamp = k_uptime_get()}; .timestamp = k_uptime_get()};
zmk_position_state_change_handle(&ev);
k_msgq_put(&peripheral_event_msgq, &ev, K_NO_WAIT);
k_work_submit(&peripheral_event_work);
} }
} }
} }
@ -744,89 +714,24 @@ static struct bt_conn_cb conn_callbacks = {
.disconnected = split_central_disconnected, .disconnected = split_central_disconnected,
}; };
K_THREAD_STACK_DEFINE(split_central_split_run_q_stack, void send_split_run_impl(struct zmk_split_run_behavior_payload_wrapper *payload_wrapper) {
CONFIG_ZMK_SPLIT_BLE_CENTRAL_SPLIT_RUN_STACK_SIZE); if (peripherals[payload_wrapper->source].state != PERIPHERAL_SLOT_STATE_CONNECTED) {
LOG_ERR("Source not connected");
struct k_work_q split_central_split_run_q; return;
}
struct zmk_split_run_behavior_payload_wrapper { if (!peripherals[payload_wrapper->source].run_behavior_handle) {
uint8_t source; LOG_ERR("Run behavior handle not found");
struct zmk_split_run_behavior_payload payload; return;
};
K_MSGQ_DEFINE(zmk_split_central_split_run_msgq,
sizeof(struct zmk_split_run_behavior_payload_wrapper),
CONFIG_ZMK_SPLIT_BLE_CENTRAL_SPLIT_RUN_QUEUE_SIZE, 4);
void split_central_split_run_callback(struct k_work *work) {
struct zmk_split_run_behavior_payload_wrapper payload_wrapper;
LOG_DBG("");
while (k_msgq_get(&zmk_split_central_split_run_msgq, &payload_wrapper, K_NO_WAIT) == 0) {
if (peripherals[payload_wrapper.source].state != PERIPHERAL_SLOT_STATE_CONNECTED) {
LOG_ERR("Source not connected");
continue;
}
if (!peripherals[payload_wrapper.source].run_behavior_handle) {
LOG_ERR("Run behavior handle not found");
continue;
}
int err = bt_gatt_write_without_response(
peripherals[payload_wrapper.source].conn,
peripherals[payload_wrapper.source].run_behavior_handle, &payload_wrapper.payload,
sizeof(struct zmk_split_run_behavior_payload), true);
if (err) {
LOG_ERR("Failed to write the behavior characteristic (err %d)", err);
}
} }
}
K_WORK_DEFINE(split_central_split_run_work, split_central_split_run_callback); int err = bt_gatt_write_without_response(
peripherals[payload_wrapper->source].conn,
peripherals[payload_wrapper->source].run_behavior_handle, &payload_wrapper->payload,
sizeof(struct zmk_split_run_behavior_payload), true);
static int
split_bt_invoke_behavior_payload(struct zmk_split_run_behavior_payload_wrapper payload_wrapper) {
LOG_DBG("");
int err = k_msgq_put(&zmk_split_central_split_run_msgq, &payload_wrapper, K_MSEC(100));
if (err) { if (err) {
switch (err) { LOG_ERR("Failed to write the behavior characteristic (err %d)", err);
case -EAGAIN: {
LOG_WRN("Consumer message queue full, popping first message and queueing again");
struct zmk_split_run_behavior_payload_wrapper discarded_report;
k_msgq_get(&zmk_split_central_split_run_msgq, &discarded_report, K_NO_WAIT);
return split_bt_invoke_behavior_payload(payload_wrapper);
}
default:
LOG_WRN("Failed to queue behavior to send (%d)", err);
return err;
}
} }
k_work_submit_to_queue(&split_central_split_run_q, &split_central_split_run_work);
return 0;
};
int zmk_split_bt_invoke_behavior(uint8_t source, struct zmk_behavior_binding *binding,
struct zmk_behavior_binding_event event, bool state) {
struct zmk_split_run_behavior_payload payload = {.data = {
.param1 = binding->param1,
.param2 = binding->param2,
.position = event.position,
.state = state ? 1 : 0,
}};
const size_t payload_dev_size = sizeof(payload.behavior_dev);
if (strlcpy(payload.behavior_dev, binding->behavior_dev, payload_dev_size) >=
payload_dev_size) {
LOG_ERR("Truncated behavior label %s to %s before invoking peripheral behavior",
binding->behavior_dev, payload.behavior_dev);
}
struct zmk_split_run_behavior_payload_wrapper wrapper = {.source = source, .payload = payload};
return split_bt_invoke_behavior_payload(wrapper);
} }
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS) #if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
@ -883,9 +788,6 @@ static struct settings_handler ble_central_settings_handler = {
#endif // IS_ENABLED(CONFIG_SETTINGS) #endif // IS_ENABLED(CONFIG_SETTINGS)
static int zmk_split_bt_central_init(void) { static int zmk_split_bt_central_init(void) {
k_work_queue_start(&split_central_split_run_q, split_central_split_run_q_stack,
K_THREAD_STACK_SIZEOF(split_central_split_run_q_stack),
CONFIG_ZMK_BLE_THREAD_PRIORITY, NULL);
bt_conn_cb_register(&conn_callbacks); bt_conn_cb_register(&conn_callbacks);
#if IS_ENABLED(CONFIG_SETTINGS) #if IS_ENABLED(CONFIG_SETTINGS)
@ -896,4 +798,4 @@ static int zmk_split_bt_central_init(void) {
#endif // IS_ENABLED(CONFIG_SETTINGS) #endif // IS_ENABLED(CONFIG_SETTINGS)
} }
SYS_INIT(zmk_split_bt_central_init, APPLICATION, CONFIG_ZMK_BLE_INIT_PRIORITY); SYS_INIT(zmk_split_bt_central_init, APPLICATION, CONFIG_ZMK_SPLIT_INIT_PRIORITY);

View file

@ -193,4 +193,4 @@ static int zmk_peripheral_ble_init(void) {
return 0; return 0;
} }
SYS_INIT(zmk_peripheral_ble_init, APPLICATION, CONFIG_ZMK_BLE_INIT_PRIORITY); SYS_INIT(zmk_peripheral_ble_init, APPLICATION, CONFIG_ZMK_SPLIT_INIT_PRIORITY);

View file

@ -20,7 +20,7 @@ LOG_MODULE_DECLARE(zmk, CONFIG_ZMK_LOG_LEVEL);
#include <zmk/behavior.h> #include <zmk/behavior.h>
#include <zmk/matrix.h> #include <zmk/matrix.h>
#include <zmk/split/bluetooth/uuid.h> #include <zmk/split/bluetooth/uuid.h>
#include <zmk/split/bluetooth/service.h> #include <zmk/split/service.h>
#if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS) #if IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
#include <zmk/events/hid_indicators_changed.h> #include <zmk/events/hid_indicators_changed.h>
@ -43,10 +43,8 @@ static void split_svc_sensor_state_ccc(const struct bt_gatt_attr *attr, uint16_t
} }
#endif /* ZMK_KEYMAP_HAS_SENSORS */ #endif /* ZMK_KEYMAP_HAS_SENSORS */
#define POS_STATE_LEN 16
static uint8_t num_of_positions = ZMK_KEYMAP_LEN; static uint8_t num_of_positions = ZMK_KEYMAP_LEN;
static uint8_t position_state[POS_STATE_LEN]; static uint8_t position_state[ZMK_SPLIT_POS_STATE_LEN];
static struct zmk_split_run_behavior_payload behavior_run_payload; static struct zmk_split_run_behavior_payload behavior_run_payload;
@ -162,116 +160,20 @@ BT_GATT_SERVICE_DEFINE(
#endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS) #endif // IS_ENABLED(CONFIG_ZMK_SPLIT_PERIPHERAL_HID_INDICATORS)
); );
K_THREAD_STACK_DEFINE(service_q_stack, CONFIG_ZMK_SPLIT_BLE_PERIPHERAL_STACK_SIZE); void send_position_state_impl(uint8_t *state, int len) {
memcpy(position_state, state, MIN(len, sizeof(position_state)));
struct k_work_q service_work_q; int err = bt_gatt_notify(NULL, &split_svc.attrs[1], state, len);
K_MSGQ_DEFINE(position_state_msgq, sizeof(char[POS_STATE_LEN]),
CONFIG_ZMK_SPLIT_BLE_PERIPHERAL_POSITION_QUEUE_SIZE, 4);
void send_position_state_callback(struct k_work *work) {
uint8_t state[POS_STATE_LEN];
while (k_msgq_get(&position_state_msgq, &state, K_NO_WAIT) == 0) {
int err = bt_gatt_notify(NULL, &split_svc.attrs[1], &state, sizeof(state));
if (err) {
LOG_DBG("Error notifying %d", err);
}
}
};
K_WORK_DEFINE(service_position_notify_work, send_position_state_callback);
int send_position_state() {
int err = k_msgq_put(&position_state_msgq, position_state, K_MSEC(100));
if (err) { if (err) {
switch (err) { LOG_DBG("Error notifying %d", err);
case -EAGAIN: {
LOG_WRN("Position state message queue full, popping first message and queueing again");
uint8_t discarded_state[POS_STATE_LEN];
k_msgq_get(&position_state_msgq, &discarded_state, K_NO_WAIT);
return send_position_state();
}
default:
LOG_WRN("Failed to queue position state to send (%d)", err);
return err;
}
} }
k_work_submit_to_queue(&service_work_q, &service_position_notify_work);
return 0;
}
int zmk_split_bt_position_pressed(uint8_t position) {
WRITE_BIT(position_state[position / 8], position % 8, true);
return send_position_state();
}
int zmk_split_bt_position_released(uint8_t position) {
WRITE_BIT(position_state[position / 8], position % 8, false);
return send_position_state();
} }
#if ZMK_KEYMAP_HAS_SENSORS #if ZMK_KEYMAP_HAS_SENSORS
K_MSGQ_DEFINE(sensor_state_msgq, sizeof(struct sensor_event), void send_sensor_state_impl(struct sensor_event *event, int len) {
CONFIG_ZMK_SPLIT_BLE_PERIPHERAL_POSITION_QUEUE_SIZE, 4); memcpy(&last_sensor_event, event, MIN(len, sizeof(last_sensor_event)));
int err = bt_gatt_notify(NULL, &split_svc.attrs[8], event, len);
void send_sensor_state_callback(struct k_work *work) {
while (k_msgq_get(&sensor_state_msgq, &last_sensor_event, K_NO_WAIT) == 0) {
int err = bt_gatt_notify(NULL, &split_svc.attrs[8], &last_sensor_event,
sizeof(last_sensor_event));
if (err) {
LOG_DBG("Error notifying %d", err);
}
}
};
K_WORK_DEFINE(service_sensor_notify_work, send_sensor_state_callback);
int send_sensor_state(struct sensor_event ev) {
int err = k_msgq_put(&sensor_state_msgq, &ev, K_MSEC(100));
if (err) { if (err) {
// retry... LOG_DBG("Error notifying %d", err);
switch (err) {
case -EAGAIN: {
LOG_WRN("Sensor state message queue full, popping first message and queueing again");
struct sensor_event discarded_state;
k_msgq_get(&sensor_state_msgq, &discarded_state, K_NO_WAIT);
return send_sensor_state(ev);
}
default:
LOG_WRN("Failed to queue sensor state to send (%d)", err);
return err;
}
} }
k_work_submit_to_queue(&service_work_q, &service_sensor_notify_work);
return 0;
}
int zmk_split_bt_sensor_triggered(uint8_t sensor_index,
const struct zmk_sensor_channel_data channel_data[],
size_t channel_data_size) {
if (channel_data_size > ZMK_SENSOR_EVENT_MAX_CHANNELS) {
return -EINVAL;
}
struct sensor_event ev =
(struct sensor_event){.sensor_index = sensor_index, .channel_data_size = channel_data_size};
memcpy(ev.channel_data, channel_data,
channel_data_size * sizeof(struct zmk_sensor_channel_data));
return send_sensor_state(ev);
} }
#endif /* ZMK_KEYMAP_HAS_SENSORS */ #endif /* ZMK_KEYMAP_HAS_SENSORS */
static int service_init(void) {
static const struct k_work_queue_config queue_config = {
.name = "Split Peripheral Notification Queue"};
k_work_queue_start(&service_work_q, service_q_stack, K_THREAD_STACK_SIZEOF(service_q_stack),
CONFIG_ZMK_SPLIT_BLE_PERIPHERAL_PRIORITY, &queue_config);
return 0;
}
SYS_INIT(service_init, APPLICATION, CONFIG_ZMK_BLE_INIT_PRIORITY);

130
app/src/split/central.c Normal file
View file

@ -0,0 +1,130 @@
/*
* Copyright (c) 2020 The ZMK Contributors
*
* SPDX-License-Identifier: MIT
*/
#include <zephyr/types.h>
#include <zephyr/init.h>
#include <zmk/stdlib.h>
#include <zmk/behavior.h>
#include <zmk/event_manager.h>
#include <zmk/events/position_state_changed.h>
#include <zmk/events/sensor_event.h>
#include <zmk/split/central.h>
#include <zmk/split/service.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(zmk, CONFIG_ZMK_LOG_LEVEL);
K_MSGQ_DEFINE(peripheral_event_msgq, sizeof(struct zmk_position_state_changed),
CONFIG_ZMK_SPLIT_CENTRAL_POSITION_QUEUE_SIZE, 4);
void peripheral_event_work_callback(struct k_work *work) {
struct zmk_position_state_changed ev;
while (k_msgq_get(&peripheral_event_msgq, &ev, K_NO_WAIT) == 0) {
LOG_DBG("Trigger key position state change for %d", ev.position);
raise_zmk_position_state_changed(ev);
}
}
K_WORK_DEFINE(peripheral_event_work, peripheral_event_work_callback);
void zmk_position_state_change_handle(struct zmk_position_state_changed *ev) {
k_msgq_put(&peripheral_event_msgq, ev, K_NO_WAIT);
k_work_submit(&peripheral_event_work);
}
#if ZMK_KEYMAP_HAS_SENSORS
K_MSGQ_DEFINE(peripheral_sensor_event_msgq, sizeof(struct zmk_sensor_event),
CONFIG_ZMK_SPLIT_CENTRAL_POSITION_QUEUE_SIZE, 4);
void peripheral_sensor_event_work_callback(struct k_work *work) {
struct zmk_sensor_event ev;
while (k_msgq_get(&peripheral_sensor_event_msgq, &ev, K_NO_WAIT) == 0) {
LOG_DBG("Trigger sensor change for %d", ev.sensor_index);
raise_zmk_sensor_event(ev);
}
}
K_WORK_DEFINE(peripheral_sensor_event_work, peripheral_sensor_event_work_callback);
void zmk_sensor_event_handle(struct zmk_sensor_event *ev) {
k_msgq_put(&peripheral_sensor_event_msgq, ev, K_NO_WAIT);
k_work_submit(&peripheral_sensor_event_work);
}
#endif /* ZMK_KEYMAP_HAS_SENSORS */
K_THREAD_STACK_DEFINE(split_central_split_run_q_stack,
CONFIG_ZMK_SPLIT_CENTRAL_SPLIT_RUN_STACK_SIZE);
struct k_work_q split_central_split_run_q;
K_MSGQ_DEFINE(zmk_split_central_split_run_msgq,
sizeof(struct zmk_split_run_behavior_payload_wrapper),
CONFIG_ZMK_SPLIT_CENTRAL_SPLIT_RUN_QUEUE_SIZE, 4);
void split_central_split_run_callback(struct k_work *work) {
struct zmk_split_run_behavior_payload_wrapper payload_wrapper;
LOG_DBG("");
while (k_msgq_get(&zmk_split_central_split_run_msgq, &payload_wrapper, K_NO_WAIT) == 0) {
send_split_run_impl(&payload_wrapper);
}
}
K_WORK_DEFINE(split_central_split_run_work, split_central_split_run_callback);
static int
split_invoke_behavior_payload(struct zmk_split_run_behavior_payload_wrapper payload_wrapper) {
LOG_DBG("");
int err = k_msgq_put(&zmk_split_central_split_run_msgq, &payload_wrapper, K_MSEC(100));
if (err) {
switch (err) {
case -EAGAIN: {
LOG_WRN("Consumer message queue full, popping first message and queueing again");
struct zmk_split_run_behavior_payload_wrapper discarded_report;
k_msgq_get(&zmk_split_central_split_run_msgq, &discarded_report, K_NO_WAIT);
return split_invoke_behavior_payload(payload_wrapper);
}
default:
LOG_WRN("Failed to queue behavior to send (%d)", err);
return err;
}
}
k_work_submit_to_queue(&split_central_split_run_q, &split_central_split_run_work);
return 0;
};
int zmk_split_invoke_behavior(uint8_t source, struct zmk_behavior_binding *binding,
struct zmk_behavior_binding_event event, bool state) {
struct zmk_split_run_behavior_payload payload = {.data = {
.param1 = binding->param1,
.param2 = binding->param2,
.position = event.position,
.state = state ? 1 : 0,
}};
const size_t payload_dev_size = sizeof(payload.behavior_dev);
if (strlcpy(payload.behavior_dev, binding->behavior_dev, payload_dev_size) >=
payload_dev_size) {
LOG_ERR("Truncated behavior label %s to %s before invoking peripheral behavior",
binding->behavior_dev, payload.behavior_dev);
}
struct zmk_split_run_behavior_payload_wrapper wrapper = {.source = source, .payload = payload};
return split_invoke_behavior_payload(wrapper);
}
static int zmk_split_central_init(void) {
k_work_queue_start(&split_central_split_run_q, split_central_split_run_q_stack,
K_THREAD_STACK_SIZEOF(split_central_split_run_q_stack),
CONFIG_ZMK_SPLIT_CENTRAL_PRIORITY, NULL);
return 0;
}
SYS_INIT(zmk_split_central_init, APPLICATION, CONFIG_ZMK_SPLIT_INIT_PRIORITY);

View file

@ -7,7 +7,7 @@
#include <zephyr/device.h> #include <zephyr/device.h>
#include <zephyr/logging/log.h> #include <zephyr/logging/log.h>
#include <zmk/split/bluetooth/service.h> #include <zmk/split/service.h>
LOG_MODULE_DECLARE(zmk, CONFIG_ZMK_LOG_LEVEL); LOG_MODULE_DECLARE(zmk, CONFIG_ZMK_LOG_LEVEL);
@ -23,17 +23,17 @@ int split_listener(const zmk_event_t *eh) {
const struct zmk_position_state_changed *pos_ev; const struct zmk_position_state_changed *pos_ev;
if ((pos_ev = as_zmk_position_state_changed(eh)) != NULL) { if ((pos_ev = as_zmk_position_state_changed(eh)) != NULL) {
if (pos_ev->state) { if (pos_ev->state) {
return zmk_split_bt_position_pressed(pos_ev->position); return zmk_split_position_pressed(pos_ev->position);
} else { } else {
return zmk_split_bt_position_released(pos_ev->position); return zmk_split_position_released(pos_ev->position);
} }
} }
#if ZMK_KEYMAP_HAS_SENSORS #if ZMK_KEYMAP_HAS_SENSORS
const struct zmk_sensor_event *sensor_ev; const struct zmk_sensor_event *sensor_ev;
if ((sensor_ev = as_zmk_sensor_event(eh)) != NULL) { if ((sensor_ev = as_zmk_sensor_event(eh)) != NULL) {
return zmk_split_bt_sensor_triggered(sensor_ev->sensor_index, sensor_ev->channel_data, return zmk_split_sensor_triggered(sensor_ev->sensor_index, sensor_ev->channel_data,
sensor_ev->channel_data_size); sensor_ev->channel_data_size);
} }
#endif /* ZMK_KEYMAP_HAS_SENSORS */ #endif /* ZMK_KEYMAP_HAS_SENSORS */
return ZMK_EV_EVENT_BUBBLE; return ZMK_EV_EVENT_BUBBLE;

View file

@ -0,0 +1,12 @@
# Copyright (c) 2023 The ZMK Contributors
# SPDX-License-Identifier: MIT
if (NOT CONFIG_ZMK_SPLIT_ROLE_CENTRAL)
target_sources(app PRIVATE peripheral.c)
endif()
if (CONFIG_ZMK_SPLIT_ROLE_CENTRAL)
target_sources(app PRIVATE central.c)
endif()
target_sources(app PRIVATE serial.c)

View file

@ -0,0 +1,20 @@
if ZMK_SPLIT && ZMK_SPLIT_SERIAL
menu "Serial Transport"
config ZMK_SPLIT_SERIAL_UART
bool "Serial over UART"
select CRC
default y
config ZMK_SPLIT_SERIAL_UART_POLL
bool "Serial over UART Polling API"
default DT_HAS_RASPBERRYPI_PICO_UART_PIO_ENABLED || BOARD_NATIVE_SIM
config ZMK_SPLIT_SERIAL_CDC_ACM
bool "Serial over USB CDC ACM"
default n
endmenu
endif

View file

@ -0,0 +1,59 @@
/*
* Copyright (c) 2023 The ZMK Contributors
*
* SPDX-License-Identifier: MIT
*/
#include <zephyr/kernel.h>
#include <zmk/split/central.h>
#include <zmk/split/serial/serial.h>
#include <zmk/events/position_state_changed.h>
// TODO TODO TODO
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(slicemk);
#define POSITION_STATE_DATA_LEN 16
static uint8_t position_state[POSITION_STATE_DATA_LEN];
static uint8_t changed_positions[POSITION_STATE_DATA_LEN];
static void serial_handle_bitmap(uint8_t *data, uint8_t len) {
for (int i = 0; i < POSITION_STATE_DATA_LEN; i++) {
changed_positions[i] = ((uint8_t *)data)[i] ^ position_state[i];
position_state[i] = ((uint8_t *)data)[i];
LOG_DBG("TODO TODO TODO data: %d", position_state[i]);
}
for (int i = 0; i < POSITION_STATE_DATA_LEN; i++) {
for (int j = 0; j < 8; j++) {
if (changed_positions[i] & BIT(j)) {
uint32_t position = (i * 8) + j;
bool pressed = position_state[i] & BIT(j);
// TODO TODO TODO does zero make sense? check ble central. what
// slot is central itself?
int slot = 0;
struct zmk_position_state_changed ev = {.source = slot,
.position = position,
.state = pressed,
.timestamp = k_uptime_get()};
zmk_position_state_change_handle(&ev);
}
}
}
}
void serial_handle_rx(uint32_t cmd, uint8_t *data, uint8_t len) {
switch (cmd) {
// Handle split bitmap transformed (sbt) version 0.
case 0x73627400:
serial_handle_bitmap(data, len);
break;
default:
LOG_ERR("Received unexpected UART command 0x%08x", cmd);
break;
}
}

View file

@ -0,0 +1,24 @@
/*
* Copyright (c) 2023 The ZMK Contributors
*
* SPDX-License-Identifier: MIT
*/
#include <zephyr/kernel.h>
#include <zmk/split/serial/serial.h>
// TODO TODO TODO
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(slicemk);
// TODO TODO TODO these two should be in a header somewhere
// TODO TODO TODO implement central to peripheral data transfer
void serial_handle_rx(uint32_t cmd, uint8_t *data, uint8_t len) {
LOG_HEXDUMP_ERR(data, len, "central to peripheral");
}
void send_position_state_impl(uint8_t *state, int len) {
serial_write_uart(0x73627400, state, len);
}

View file

@ -0,0 +1,206 @@
/*
* Copyright (c) 2023 The ZMK Contributors
*
* SPDX-License-Identifier: MIT
*/
#include <zephyr/device.h>
#include <zephyr/drivers/uart.h>
#include <zephyr/logging/log.h>
#include <zephyr/sys/crc.h>
#include <zmk/split/serial/serial.h>
// TODO TODO TODO
#include <zephyr/logging/log.h>
LOG_MODULE_REGISTER(slicemk);
#define SERIAL_MSG_PREFIX "UarT"
K_THREAD_STACK_DEFINE(serial_wq_stack, 1024);
static struct k_work_q serial_wq;
static struct serial_device serial_devs[] = {
#ifdef CONFIG_ZMK_SPLIT_SERIAL_UART
{
.dev = DEVICE_DT_GET(DT_CHOSEN(zmk_split_uart)),
#ifdef CONFIG_ZMK_SPLIT_SERIAL_UART_POLL
.poll = true,
#endif
},
#endif
#ifdef CONFIG_ZMK_SPLIT_SERIAL_CDC_ACM
{
.dev = DEVICE_DT_GET(DT_CHOSEN(zmk_split_cdc_acm)),
},
#endif
};
#define CONFIG_ZMK_SPLIT_SERIAL_COUNT ARRAY_SIZE(serial_devs)
static bool serial_tx_callback(struct serial_device *ud) {
// Read data from buffer. Stop transmitting if buffer is empty.
uint8_t data[32];
int len = ring_buf_peek(&ud->tx_rb, data, sizeof(data));
if (len == 0) {
return true;
}
// Write data to UART and remove number of bytes written from buffer.
int ret = uart_fifo_fill(ud->dev, data, len);
if (ret < 0) {
LOG_ERR("failed to fill UART FIFO (err %d)", ret);
return true;
}
ring_buf_get(&ud->tx_rb, data, ret);
return false;
}
static void serial_rx_work_handler(struct k_work *work) {
struct serial_device *sd = CONTAINER_OF(work, struct serial_device, rx_work);
// Continue processing data as long as the buffer exceeds the header length
// (13 bytes).
uint8_t data[280];
while (ring_buf_peek(&sd->rx_rb, data, 13) >= 13) {
// Discard single byte if prefix does not match.
if (memcmp(data, SERIAL_MSG_PREFIX, strlen(SERIAL_MSG_PREFIX))) {
uint8_t discard;
ring_buf_get(&sd->rx_rb, &discard, 1);
continue;
}
// Stop processing if message body is not completely buffered.
int len = data[12];
int total = len + 13;
if (ring_buf_size_get(&sd->rx_rb) < total) {
return;
}
// Check message checksum and handle message.
uint32_t cmd, crc;
ring_buf_get(&sd->rx_rb, data, total);
memcpy(&cmd, &data[4], sizeof(cmd));
memcpy(&crc, &data[8], sizeof(crc));
if (crc == crc32_ieee(&data[13], len)) {
serial_handle_rx(cmd, &data[13], len);
} else {
LOG_ERR("received UART message with invalid CRC32 checksum");
}
}
}
static void serial_rx_callback(struct serial_device *sd) {
uint8_t c;
while (uart_fifo_read(sd->dev, &c, 1) == 1) {
ring_buf_put(&sd->rx_rb, &c, 1);
}
k_work_submit_to_queue(&serial_wq, &sd->rx_work);
}
static void serial_callback(const struct device *dev, void *data) {
if (uart_irq_update(dev)) {
struct serial_device *ud = data;
if (uart_irq_tx_ready(dev)) {
// If transmission complete, disable IRQ until next transmission.
bool complete = serial_tx_callback(ud);
if (complete) {
uart_irq_tx_disable(dev);
}
}
// TODO TODO TODO lookup index in serial_devs array for slot ID?
if (uart_irq_rx_ready(dev)) {
serial_rx_callback(ud);
}
}
}
static void serial_write(struct serial_device *sd, uint32_t cmd, uint8_t *data, uint8_t len) {
// TODO TODO TODO use buf with size SERIAL_BUF_SIZE. do single
// ring_buf_put() to avoid potential race
uint8_t header[13] = SERIAL_MSG_PREFIX;
memcpy(&header[4], &cmd, sizeof(cmd));
uint32_t crc = crc32_ieee(data, len);
memcpy(&header[8], &crc, sizeof(crc));
header[12] = len;
ring_buf_put(&sd->tx_rb, header, sizeof(header));
ring_buf_put(&sd->tx_rb, data, len);
#ifdef CONFIG_ZMK_SPLIT_SERIAL_UART_POLL
if (sd->poll) {
k_work_submit_to_queue(&serial_wq, &sd->tx_work);
return;
}
#endif
uart_irq_tx_enable(sd->dev);
}
// TODO TODO TODO this should be abstracted a bit differently
#ifdef CONFIG_ZMK_SPLIT_SERIAL_UART
void serial_write_uart(uint32_t cmd, uint8_t *data, uint8_t len) {
serial_write(&serial_devs[0], cmd, data, len);
}
#endif
#ifdef CONFIG_ZMK_SPLIT_SERIAL_UART_POLL
static void serial_tx_work_handler(struct k_work *work) {
struct serial_device *sd = CONTAINER_OF(work, struct serial_device, tx_work);
uint8_t c;
while (ring_buf_get(&sd->tx_rb, &c, sizeof(c))) {
uart_poll_out(sd->dev, c);
}
}
static void serial_rx_timer_handler(struct k_timer *timer) {
struct serial_device *sd = CONTAINER_OF(timer, struct serial_device, rx_timer);
uint8_t c;
while (uart_poll_in(sd->dev, &c) == 0) {
ring_buf_put(&sd->rx_rb, &c, sizeof(c));
}
k_work_submit_to_queue(&serial_wq, &sd->rx_work);
}
#endif
static int serial_init(void) {
struct k_work_queue_config uart_tx_cfg = {.name = "serial_wq"};
k_work_queue_start(&serial_wq, serial_wq_stack, K_THREAD_STACK_SIZEOF(serial_wq_stack), 14,
&uart_tx_cfg);
for (int i = 0; i < CONFIG_ZMK_SPLIT_SERIAL_COUNT; i++) {
struct serial_device *sd = &serial_devs[i];
if (!device_is_ready(sd->dev)) {
LOG_ERR("failed to get serial device %s", sd->dev->name);
return 1;
}
// Initialize ring buffer.
ring_buf_init(&sd->rx_rb, sizeof(sd->rx_buf), sd->rx_buf);
ring_buf_init(&sd->tx_rb, sizeof(sd->tx_buf), sd->tx_buf);
k_work_init(&sd->rx_work, serial_rx_work_handler);
#ifdef CONFIG_ZMK_SPLIT_SERIAL_UART_POLL
if (sd->poll) {
k_timer_init(&sd->rx_timer, serial_rx_timer_handler, NULL);
k_timer_start(&sd->rx_timer, K_NO_WAIT, K_TICKS(1));
k_work_init(&sd->tx_work, serial_tx_work_handler);
continue;
}
#endif
int err = uart_irq_callback_user_data_set(sd->dev, serial_callback, sd);
if (err) {
LOG_ERR("failed to set callback for %s (err %d)", sd->dev->name, err);
return err;
}
uart_irq_rx_enable(sd->dev);
}
return 0;
}
SYS_INIT(serial_init, APPLICATION, CONFIG_ZMK_SPLIT_INIT_PRIORITY);

128
app/src/split/service.c Normal file
View file

@ -0,0 +1,128 @@
/*
* Copyright (c) 2023 The ZMK Contributors
*
* SPDX-License-Identifier: MIT
*/
#include <zephyr/types.h>
#include <zephyr/sys/util.h>
#include <zephyr/init.h>
#include <zmk/events/sensor_event.h>
#include <zmk/sensors.h>
#include <zmk/split/service.h>
#include <zephyr/logging/log.h>
LOG_MODULE_DECLARE(zmk, CONFIG_ZMK_LOG_LEVEL);
static uint8_t position_state[ZMK_SPLIT_POS_STATE_LEN];
#if ZMK_KEYMAP_HAS_SENSORS
static struct sensor_event last_sensor_event;
#endif
K_THREAD_STACK_DEFINE(service_q_stack, CONFIG_ZMK_SPLIT_PERIPHERAL_STACK_SIZE);
struct k_work_q service_work_q;
K_MSGQ_DEFINE(position_state_msgq, sizeof(char[ZMK_SPLIT_POS_STATE_LEN]),
CONFIG_ZMK_SPLIT_PERIPHERAL_POSITION_QUEUE_SIZE, 4);
void send_position_state_callback(struct k_work *work) {
uint8_t state[ZMK_SPLIT_POS_STATE_LEN];
while (k_msgq_get(&position_state_msgq, &state, K_NO_WAIT) == 0) {
send_position_state_impl(state, sizeof(state));
}
};
K_WORK_DEFINE(service_position_notify_work, send_position_state_callback);
int send_position_state() {
int err = k_msgq_put(&position_state_msgq, position_state, K_MSEC(100));
if (err) {
switch (err) {
case -EAGAIN: {
LOG_WRN("Position state message queue full, popping first message and queueing again");
uint8_t discarded_state[ZMK_SPLIT_POS_STATE_LEN];
k_msgq_get(&position_state_msgq, &discarded_state, K_NO_WAIT);
return send_position_state();
}
default:
LOG_WRN("Failed to queue position state to send (%d)", err);
return err;
}
}
k_work_submit_to_queue(&service_work_q, &service_position_notify_work);
return 0;
}
int zmk_split_position_pressed(uint8_t position) {
WRITE_BIT(position_state[position / 8], position % 8, true);
return send_position_state();
}
int zmk_split_position_released(uint8_t position) {
WRITE_BIT(position_state[position / 8], position % 8, false);
return send_position_state();
}
#if ZMK_KEYMAP_HAS_SENSORS
K_MSGQ_DEFINE(sensor_state_msgq, sizeof(struct sensor_event),
CONFIG_ZMK_SPLIT_PERIPHERAL_POSITION_QUEUE_SIZE, 4);
void send_sensor_state_callback(struct k_work *work) {
while (k_msgq_get(&sensor_state_msgq, &last_sensor_event, K_NO_WAIT) == 0) {
send_sensor_state_impl(&last_sensor_event, sizeof(last_sensor_event));
}
};
K_WORK_DEFINE(service_sensor_notify_work, send_sensor_state_callback);
int send_sensor_state(struct sensor_event ev) {
int err = k_msgq_put(&sensor_state_msgq, &ev, K_MSEC(100));
if (err) {
// retry...
switch (err) {
case -EAGAIN: {
LOG_WRN("Sensor state message queue full, popping first message and queueing again");
struct sensor_event discarded_state;
k_msgq_get(&sensor_state_msgq, &discarded_state, K_NO_WAIT);
return send_sensor_state(ev);
}
default:
LOG_WRN("Failed to queue sensor state to send (%d)", err);
return err;
}
}
k_work_submit_to_queue(&service_work_q, &service_sensor_notify_work);
return 0;
}
int zmk_split_sensor_triggered(uint8_t sensor_index,
const struct zmk_sensor_channel_data channel_data[],
size_t channel_data_size) {
if (channel_data_size > ZMK_SENSOR_EVENT_MAX_CHANNELS) {
return -EINVAL;
}
struct sensor_event ev =
(struct sensor_event){.sensor_index = sensor_index, .channel_data_size = channel_data_size};
memcpy(ev.channel_data, channel_data,
channel_data_size * sizeof(struct zmk_sensor_channel_data));
return send_sensor_state(ev);
}
#endif /* ZMK_KEYMAP_HAS_SENSORS */
static int service_init(void) {
static const struct k_work_queue_config queue_config = {
.name = "Split Peripheral Notification Queue"};
k_work_queue_start(&service_work_q, service_q_stack, K_THREAD_STACK_SIZEOF(service_q_stack),
CONFIG_ZMK_SPLIT_PERIPHERAL_PRIORITY, &queue_config);
return 0;
}
SYS_INIT(service_init, APPLICATION, CONFIG_ZMK_SPLIT_INIT_PRIORITY);

View file

@ -129,9 +129,11 @@ Following [split keyboard](../features/split-keyboards.md) settings are defined
| `CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_FETCHING` | bool | Enable fetching split peripheral battery levels to the central side | n | | `CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_FETCHING` | bool | Enable fetching split peripheral battery levels to the central side | n |
| `CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_PROXY` | bool | Enable central reporting of split battery levels to hosts | n | | `CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_PROXY` | bool | Enable central reporting of split battery levels to hosts | n |
| `CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_QUEUE_SIZE` | int | Max number of battery level events to queue when received from peripherals | `CONFIG_ZMK_SPLIT_BLE_CENTRAL_PERIPHERALS` | | `CONFIG_ZMK_SPLIT_BLE_CENTRAL_BATTERY_LEVEL_QUEUE_SIZE` | int | Max number of battery level events to queue when received from peripherals | `CONFIG_ZMK_SPLIT_BLE_CENTRAL_PERIPHERALS` |
| `CONFIG_ZMK_SPLIT_BLE_CENTRAL_POSITION_QUEUE_SIZE` | int | Max number of key state events to queue when received from peripherals | 5 | | `CONFIG_ZMK_SPLIT_CENTRAL_POSITION_QUEUE_SIZE` | int | Max number of key state events to queue when received from peripherals | 5 |
| `CONFIG_ZMK_SPLIT_BLE_CENTRAL_SPLIT_RUN_STACK_SIZE` | int | Stack size of the BLE split central write thread | 512 | | `CONFIG_ZMK_SPLIT_CENTRAL_SPLIT_RUN_STACK_SIZE` | int | Stack size of the BLE split central write thread | 512 |
| `CONFIG_ZMK_SPLIT_BLE_CENTRAL_SPLIT_RUN_QUEUE_SIZE` | int | Max number of behavior run events to queue to send to the peripheral(s) | 5 | | `CONFIG_ZMK_SPLIT_CENTRAL_SPLIT_RUN_QUEUE_SIZE` | int | Max number of behavior run events to queue to send to the peripheral(s) | 5 |
| `CONFIG_ZMK_SPLIT_BLE_PERIPHERAL_STACK_SIZE` | int | Stack size of the BLE split peripheral notify thread | 650 | | `CONFIG_ZMK_SPLIT_CENTRAL_PRIORITY` | int | Priority of the split central thread | 5 |
| `CONFIG_ZMK_SPLIT_BLE_PERIPHERAL_PRIORITY` | int | Priority of the BLE split peripheral notify thread | 5 | | `CONFIG_ZMK_SPLIT_PERIPHERAL_STACK_SIZE` | int | Stack size of the split peripheral notify thread | 756 |
| `CONFIG_ZMK_SPLIT_BLE_PERIPHERAL_POSITION_QUEUE_SIZE` | int | Max number of key state events to queue to send to the central | 10 | | `CONFIG_ZMK_SPLIT_PERIPHERAL_PRIORITY` | int | Priority of the split peripheral notify thread | 5 |
| `CONFIG_ZMK_SPLIT_PERIPHERAL_POSITION_QUEUE_SIZE` | int | Max number of key state events to queue to send to the central | 10 |
| `CONFIG_ZMK_SPLIT_INIT_PRIORITY` | int | Split init priority | 50 |