diff --git a/app/module/drivers/sensor/battery/battery_common.c b/app/module/drivers/sensor/battery/battery_common.c index 9afe2d5b..f0adaf60 100644 --- a/app/module/drivers/sensor/battery/battery_common.c +++ b/app/module/drivers/sensor/battery/battery_common.c @@ -29,15 +29,37 @@ int battery_channel_get(const struct battery_value *value, enum sensor_channel c return 0; } -uint8_t lithium_ion_mv_to_pct(int16_t bat_mv) { - // Simple linear approximation of a battery based off adafruit's discharge graph: - // https://learn.adafruit.com/li-ion-and-lipoly-batteries/voltages +uint8_t lithium_ion_mv_to_pct(int16_t batt_mv) { + // Lookup table of slope formulas for calculating remaining battery capacity. + // The original values used to calculate slopes come from: + // + // https://blog.ampow.com/lipo-voltage-chart/ + // + struct lookup_point { + int16_t millivolts; + int16_t percent; + }; - if (bat_mv >= 4200) { - return 100; - } else if (bat_mv <= 3450) { - return 0; + static const struct lookup_point battery_lookup[] = { + {.millivolts = 4200, .percent = 100}, {.millivolts = 3870, .percent = 60}, + {.millivolts = 3690, .percent = 10}, {.millivolts = 3610, .percent = 5}, + {.millivolts = 3270, .percent = 0}, + }; + + if (batt_mv > battery_lookup[0].millivolts) { + return battery_lookup[0].percent; } - return bat_mv * 2 / 15 - 459; -} \ No newline at end of file + for (int i = 1; i < ARRAY_SIZE(battery_lookup); i++) { + struct lookup_point one = battery_lookup[i - 1]; + struct lookup_point two = battery_lookup[i]; + if (batt_mv >= two.millivolts) { + const int t = batt_mv - one.millivolts; + const int dx = two.millivolts - one.millivolts; + const int dy = two.percent - one.percent; + return one.percent + dy * t / dx; + } + } + + return battery_lookup[ARRAY_SIZE(battery_lookup) - 1].percent; +}